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ABSTRACT For timing closure of logic circuits, circuit designers must perform sign-offs on a variety of
process, voltage, and temperature (PVT) conditions. Designs of advanced logic circuits involve a multitude
of voltage islands and operating modes, each of which requires delay characterizations at nearby PVT
corners. Furthermore, advanced technologies nodes suffer from corner explosion: while the impact of
PVT variations is being exacerbated, process variations are also diversifying, increasing the number of
operating conditions exponentially. This paper revisits the importance of cross-corner timing estimations and
proposes a delay variation model to mitigate such corner explosion. Our objective is to reduce PVT corner
characterization effort for timely static timing analysis on an exploding number of operating conditions. Our
proposed Decomposed Propagation Vector Variation Model (DPVVM) decomposes propagation delay and
timing constraints into the driving by the receiver cell and its driver cell; by scaling them separately, delay
characterization effort is reduced to a fraction of time while realizing accurate timing estimations. We also
propose Multi-Dimension Recomposition (MDR) scheme, which exploits a multitude of pre-characterized
corners to further improve the consistency of cross-corner timing estimations. As a result, with only 8.0%
of a corner characterization effort compared to the full-characterization, DPVVM combined with MDR
achieves overall cross-corner timing estimation errors of 4.8% and 5.6% for single cells and complex
logic circuits—or improvements of 69% and 61% over the conventional derating method, respectively. Our
proposed method’s characterization overhead is 11% over the conventional derating method; the overhead
is marginal, accounting for only 0.76% of a full-characterization time.

INDEX TERMS CMOS technology, design automation, design tools, integrated circuit synthesis, logic
circuits, semiconductor devices.

I. INTRODUCTION
Timing variability is of significant concern when it comes to
timing sign-off of modern integrated circuits. The shrinking
of process technology often implies a diversity of physical
effects to take into account, making timing estimation at
various operating conditions non-linear and hence unpre-
dictable [1]. At the same time, the importance of the valida-
tion under an increasing number of process(P), voltage(V),
and temperature(T) (PVT) conditions is growing, causing
corner explosion [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

Design automation tools must validate given designs under
a vast range of PVT corners, both timely and accurately.
Failure to provide accurate timing estimation can either lead
to design pessimism—over-estimating timing violations; the
circuit ends up occupying unnecessarily large area or provid-
ing limited clock frequency—or optimism—under-estimating
timing violations; the circuit ends up either being unsta-
ble or non-functional. Sign-off with multi-corner multi-mode
(MCMM) analysis [3] requires sign-offs on a vast number of
operating conditions, but the effort to provide such conditions
is often overlooked. Furthermore, if given the ability to per-
form timing closures on more PVT conditions, designers can
better assess a given circuits’ sensitivity to PVT variations,
resulting in more efficient circuit designs in performance,
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FIGURE 1. Comparison of approaches to derive timing under desired
PVT corner.

power, or area. Fig. 1(a) presents an overview on how prop-
agation delay (TPD) and transition time (Ttran) of a gate cell
are extracted from lookup tables. Figuratively, thousands of
lookup tables for hundreds of cells need to be generated for
each PVT corner; multiplying the number to hundreds of
corners yields millions of timing arcs to be simulated. The
idea of characterizing libraries on hundreds or even tens of
thousands of PVT corners [4] is rapidly becoming unpractical
at best, if ever feasible.

EDA vendors and foundries have been providing delay
variation estimation methods to alleviate the characteriza-
tion problem. However, these methods fall short of accuracy
because propagation delay measures the propagation made
by both the receiver cell and its driver cell as a single lump-
sum, failing to capture a receiver cell’s actual propagation
from its input threshold voltage. In a few cases, the output
is driven before the input reaches 1

2VDD, causing negative
delay; the conventional derating method does not model this
phenomenon and causes significant errors. We observed that
the variability in timing components of a receiver cell and its
driving cell—together composing propagation delay—differ
and should be scaled separately.

We hereby proposeDecomposed Propagation Vector Vari-
ation Model (DPVVM), an accurate delay variation model to
estimate timing in non-characterized target corners from pre-
characterized base corners with minimal SPICE simulations.
The flow of our work is highlighted in Fig. 1(b). The propaga-
tion delay or the timing constraint of a receiver cell is decom-
posed into propagation vectors: the driver propagation—
driven by the driver cell before the receiver reaches its
threshold voltage—and the receiver propagation—driven by
the receiver cell itself after the driver propagation. These
components are scaled independently using scaling factors

and then recomposed back to yield the timing at the desired
PVT corner.

The novelties of this paper are as follows:
1) We propose a novel method to decompose, scale, and

recompose TPD to achieve improved accuracy in cross-
corner timing estimation over the conventional derating
method. Extra characterization effort is marginal in
comparison to the conventional derating.

2) We also propose Multiple-Dimension Recomposition
(MDR)—a method applicable to both derating and
DPVVM—to perform timing estimation from multiple
base corners to further improve accuracy for the similar
characterization effort.

3) DPVVM combined with MDR—or DPVVM-MDR—
provides accuracy level comparable to state-of-the-arts
variation models based on machine learning; DPVVM-
MDR is the most effortless variation model, requiring
the least computation overheads, covering sequential
cells, and being independent of process technologies.

The characteristics of DPVVM-MDR can be highlighted
as follows:

1) Delay estimation with high accuracy: with its abil-
ity to capture monotonic propagation characteristics
by distinguishing different sources of propagation,
DPVVM-MDR showcases average cross-corner delay
estimation errors of 4.8% and 5.6%—or improve-
ments of 69% and 61% over the conventional der-
ating method—for single-cells and complex circuits,
respectively.

2) Low sensitivity to sampling policies: DPVVM-MDR
exhibits consistent accuracy across different sam-
pling methods; different data sampling point indices
within a lookup table yielded consistent error rates
within 2.7%p range as opposed to 17%p of the baseline
derating method. By sampling from 4 points, the char-
acterization effort of a corner could be reduced by 92%.

3) Application to timing constraints: DPVVM-MDR
can also decompose and scale timing constraints from
clock and data signals. We achieved an average timing
estimation error of 15%—or an improvement of 59%
over the conventional derating method for timing
constraints.

4) Compatibility to conventional delay models:
DPVVM-MDR scales TPD and Ttran information—the
most basic timing information required by commercial
timing analysis tools—from base corners and is thus
compatible with most delay models, i.e., NDLM, CCS,
and ECSM.

We organized the following sections as follows. Section II
includes preliminaries, the industrial context where cross-
corner timing estimation has become critical, and the previ-
ous works related to cross-corner timing estimation. Then,
in Section III, we demonstrate a motivating example of the
conventional timing estimation method and discuss its short-
comings. In Section IV, we describe our proposed approaches
in detail. Section V contains our experimental setup and
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timing estimation results, as well as in-depth discussions
on the results. Section VI includes comparisons of our
methods to state-of-the-art approaches in several aspects.
Finally, Section VII concludes the topic with proposals of
future work.

II. BACKGROUND
A. DELAY MODELS AND INPUT THRESHOLD VOLTAGE
A delay model is a timing estimation model where propa-
gation time from an input pin to an output pin is estimated.
Delay models are the main components in static timing anal-
ysis (STA) to enable timely and accurate timing estimations
since dynamic timing analysis using slow device-level circuit
simulators such as HSPICE is infeasible in large-scale cir-
cuits. Several delay models have been proposed [5]–[10] and
those prominently deployed in the industry use the identical
framework of table lookup as presented in [8]. For instance,
NLDM, the most representative model, contains propagation
delay TPD in function of the effective load capacitance Cl
and the input transition time Ttran—the toggling time from
one logical state to an opposite state.Waveform-basedmodels
such as CCS and ECSM differ from NLDM in that entries of
lookup tables are waveform data instead of decimal values.
Nonetheless, the acquired waveform is further processed to
obtain TPD and Ttran, and thus STA procedure is identical for
most prominent delay models.
TPD, as defined in the JEDEC standard [11], is defined

as follows:

TPD := Tout (
1
2
VDD)− Tin(

1
2
VDD), (1)

where Tin(v) and Tout (v) denote the input and output time of a
given cell—referred to as a receiver cell—respectively, when
the voltage equals v. Ttran is defined as follows, in consider-
ation of both rise and fall transitions:

Ttran := |Tin(Vupper )− Tin(Vlower )|, (2)

where Vupper and Vlower represent upper and lower reference
voltage level—typically expressed in proportion to VDD—
respectively.

The rationale for choosing 1
2VDD as the reference voltage

point is to be able to accumulate the delay of individual cells
into the delay of a whole path. However, the actual driving of
the receiver cell does not commence at 1

2VDD.
Each cell has a unique input threshold voltage (VIT ),

the input voltage level at which the output propagation
occurs [12]–[16]. To illustrate the importance of VIT in pre-
cise delay representation, Fig. 2 plots examples of input and
output waveforms of a rise delay. Here, we define VIT as
the input voltage at which the output voltage is 1

2VDD—
that is, if we wait enough time after the input reaches VIT ,
the output would eventually propagate to 1

2VDD. In Fig. 2(a),
the output propagation occurs atVIT ; in the example, the input
transition occurs rapidly and the difference between TPD and
propagation time from input VIT to output 1

2VDD—denoted
as Treceiver—seems insignificant. However, in Fig. 2(b),

FIGURE 2. Examples of an inverting signal propagation for a rise delay.

the input transition occurs slowly and the output propagation
to 1

2VDD occurs even before the input reaches 1
2VDD; this

phenomenon is referred to as negative delay.
The notion of input threshold voltages is not something

new and is found in earlier works, although its definition
varies in the literature [12]–[16]. However, the scopes of
the works are limited to conceptual introductions to VIT
and do not propose a method to apply it to existing STA
flows, especially for path delay computations. In this paper,
we adopt the concept of VIT to establish a reliable delay
variation model which applies to the conventional STA and
thus to path delays.

It is worth noting that the driver cell’s driving strength
determines the driving of the input pin. As a result, TPD,
a combination of the driving of the driver cell and the
receiver cell, is non-monotonic and unpredictable across
Ttran, Cl , and especially across PVT corners, as will be
discussed in Section III. Our proposed cross-corner varia-
tion model, DPVVM, decomposes propagation delay by its
driving sources and independently scales them to provide
accurate and consistent delay estimates.

B. CORNER EXPLOSION AND TIMING CLOSURE
In the past, foundries offered scaling-based cross-corner tim-
ing estimation methods—within proprietary documents—
with empirically derived derating factors to reflect timing
variability due to PVT variations. The timing closure was
performed on the nominal corner, and the derating factors
are used to estimate the worst operating condition and the
timings therein.

Then, due to the advancement in process technologies and
the emergence of design technologies such as power gating,
voltage islands, and fine-grained dynamic voltage frequency
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scaling [17]–[19], timing variability due to process, voltage,
and temperature variations became critical to the timing clo-
sure efficiency of logic circuits. The industry adopted multi-
corner multi-mode (MCMM) timing analysis and transitioned
from the derating to performing sign-off at every operating
condition [1], [20], [21]. MCMM analysis requires standard
cell libraries characterized at a set of PVT corners for each of
the given operating voltage modes.

The number of PVT corners was not a concern until
recently. However, in sub-micron era, timing closure prob-
lem began to suffer from a phenomenon referred to as the
corner explosion, where the timing variability increases due
to the process variations [1], [2], [22], voltage variations [23],
and temperature variations [1], [24]–[26]. To further exac-
erbate the corner explosion, new dimensions in process
variations—e.g., metal layers and lithography–are adding up
in advanced process technologies, increasing the number of
corners exponentially [2]. In a decade-old 28nm node, for
instance, a combination of 5 base layer process corners—
slow-slow, slow-fast, fast-slow, fast-fast, normal-normal—
5 metal process corners—Cmax, Cmin, typical, RCmax,
RCmin—5 voltage corners, and 5 temperature corners pro-
duces 625 corners, for the nominal operating mode alone.

In short, under the increasing influence of PVT variations
and recent process and design technologies, the preparation
and the updating of the required standard cell libraries on an
overwhelming number of PVT corners are becoming prob-
lematic [2]. We claim that it is time to revisit the derating
methods and seek a method to improve them; we propose an
accurate delay variation model inspired by the conventional
derating model to estimate timing information across corners.

C. CROSS-CORNER VARIATION MODELS
In this paper, the term cross-corner variation models refers
to methods to estimate propagation delay TPD′ under a target
corner OC t from delay TPD under pre-characterized base
corner OCb.
In academia, there are a few analytical approaches to

reflect and estimate PVT variations [24]–[27]. While these
variation models claim accurate estimation results, they do
not cover all of the process, voltage, and temperature varia-
tions; these models typically target specific physical aspects
of devices. Besides, analytical models must be often revis-
ited and verified upon the emergence of new process tech-
nologies. Furthermore, most works omit the application on
sequential cells; cross-corner timing estimation of timing
constraints is crucial since their pass-fail characterization is
time-consuming.

State-of-the-art variation models are based on deep learn-
ing or machine learning [4], [28]–[31]. These models
claim accurate variation estimations across various operating
conditions. However, the gain in characterization effort can
be overshadowed by computational efforts such as network
configuration, validation overheads, training, and inference
computations. We shall further discuss the details of these
works in Section VI along with the comparisons to our work.

In the industry, foundries and EDA vendors have been
providing derating-based methods, which are still being
deployed and studied [26], [32]–[34]. The derating method
is more practical than the analytical models in that they are
transparent to specific physical effects but are less capable in
terms of accuracy since the derating is applied to the lump-
sum TPD, as mentioned earlier in Section II-A

One of the most primitive examples of derating found
in the literature is from [35]; where derating factors—also
denoted as scaling factors or k-factors in the literature—are
given for each of P, V, and T variations without specifying
exact operating conditions. However, it is more common to
consider unique derating factors for each OC t , for each cell
within each OC t , or for each timing arc within each cell.
In this paper we refer to derating factors as being unique for
each of TPD and Ttran, cell c, and timing arc a as in [33].
For TPD under given OCb, c, a, Ttran, and Cl condition,
the derating factor for OC t is applied as follows:

T ′PD(OC
t , c, a,Ttran,Cl)= kPD(OC t , c, a)

∗TPD(OCb, c, a,Ttran,Cl), (3)

where kPD is the derating factor for TPD which is typically
derived as follows:

kPD(OC t , c, a) = central(
TPD(OC t , c, a)
TPD(OCb, c, a)

), (4)

where central(T ) represents an arbitrary central tendency—
e.g., mean, median, or mode—from data samples T . The
same principles apply for Ttran and its derating factor, ktran;
while T ′PD is accumulated to estimate path delays, T ′tran
becomes the input of the next cells. This straightforward
variation model is inaccurate, as will be discussed in the
following sections.

Analytical models are impractical since they are bound to
specific physical effects; the derating method falls short of
accurate results since it scales the lump-sum of delay compo-
nents with separate driving sources. However, if we overcome
the conventional derating method’s limitation, the method
can be transparently applied to any operating conditions and
most prominent delay models, with minimal characterization
effort.

III. MOTIVATION
As a motivating example, we observed the accuracy of the
derating method by case-studying TPD under voltage varia-
tions, using SPICE simulations. Fig. 3 plots the rise delay—
t_pd—of a NAND4 cell for different Ttran at the nominal
supply voltage condition—0.8V—and at a target condition—
1.0V—postfixed as @0.8V and @1.0V, respectively. Then
the estimated delay—t_pd_derate was acquired by scal-
ing the delay measured at 0.8V t_pd@0.8V; kPD was
obtained by using all the acquired data, and the mean
value was chosen as a central tendency. By comparing
t_pd@0.8V to t_pd@1.0V, what we observe are that
these two curves are not inter-scalable; they have different
tipping points, and even worse, the delay at 1.0V exhibits
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FIGURE 3. NAND4 rise delay at 0.8V, 1.0V, and derated from 0.8V to 1.0V.

negative delay, whereas the delay is always positive at 0.8V
under the given Ttran range. Negative delay is a well-known
phenomenon under slow transition; the implication behind
the negative delay is that the driving of the cell commences
before the input reaching 1

2VDD. In the given example, kPD
happened to be approximately -1.0 due to the dominance of
negative delay and the resulting curve of t_pd’ appears to
be a flat mirror image as shown in Fig. 3. It becomes clear that
TPD is not suitable for derating over PVT variations—at least
in extreme cases.

To further assess the accuracy of the conventional cross-
corner timing estimation method, we performed the derating
of NAND4 rise delay over all possible operating condi-
tions. The setup including TPD and Ttran are as specified
in Section V-B. Fig. 4 compares the estimated delay value
against the actual SPICE measurement at the target corners,
under a different number of dimensions of variations—out
of the P, V, and T domain. The reference curve y = x is
where estimated values match the actual values, so the closer
a point is to the curve, the better the estimation is. The results
were inaccurate; we observed a few points far-fetched from
the reference curve, and the sign of the estimated delay was
mismatched when the actual delay was negative. The error
worsened when multiple variation dimensions are combined,
manifesting the most inconsistency when variation occurs
in all three dimensions of P, V, and T domains, as shown
in Fig. 4(c).

It is important to note that mean absolute percentage error
(MAPE)—the most general error metric—is inadequate to
represent the accuracy of delay models and can be misleading
in some cases. MAPE is infamous for boosting its value
from outliers when actual values are close to zero; abso-
lute percentage error (APE) diverges to infinity near 0 due
to division-by-zero [36]. In cross-corner timing estimations,
a few outliers with significant errors in the near-zero delay
region may overshadow an entire dataset’s accuracy. For each
dataset shown in each of Fig. 4(a), (b), and (c), we observed
MAPEs of 130%, 82%, and 100%, respectively and maxi-
mum absolute percentage errors of whopping high 23,000%,
13,000%, and 41,000%, respectively. The figures are mis-
leading because the data in Fig. 4(c) seem more diffused.

FIGURE 4. Estimated delay plotted against actual SPICE measurements,
across different number of PVT dimensions.

To alleviate the overwhelming effect of near-zero outliers
with significant errors, we tried excluding the data points with
a sub-picosecond delay, which accounted for approximately
1.0% of the entire dataset. We then observed MAPEs of 42%,
49%, and 54%, respectively, and maximum absolute percent-
age errors of 1,400%, 2,100%, and 2,000%, respectively; the
figures and their relative magnitude drastically differ from the
previous ones, implying the inconsistency of MAPE due to
near-zero outliers.

The derating method’s inaccuracy is due to the error in the
timing from which the conventional delay models measure
the delay. Fig. 5 shows the concept of our proposed variation
model, where we decompose the delay propagation into
the propagation time caused by the receiver cell itself—
denoted as t_receiver—and the propagation time caused
by its driver cell—denoted as t_driver. We observed
that t_receiver trends are monotonically increasing
and positive throughout input transition time as opposed
to t_pd. In contrast to t_pd@0.8V and t_pd@1.0V,
t_receiver@0.8V and t_receiver@1.0V are highly
correlated; t_receiver’— T ′receiver scaled from
t_receiver@0.8V—resulted in an MAPE of 4% when
compared to t_receiver@1.0V. t_receiver’ is then
added to t_driver to yield t_pd’, an estimation of
t_pd@1.0V. With accurately fitted t_pd’, we achieved
an MAPE of 14% as compared to 300% using conventional
derating as depicted in Fig. 3. Note the jump in MAPE from
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FIGURE 5. NAND4 rise delay at 0.8V, 1.0V, T ′

receiver scaled from 0.8V to
1.0V, and T ′

driver derived from input Ttran.

4% to 14% after recomposition; again, this is owing to the
error-boosting near-zero outliers.

This section showcased how decomposing TPD by the
driving source effectively mitigates negative delay and yields
higher accuracy in cross-corner timing estimations. We shall
discuss the details on the decomposition and recomposition
methodology further in the following section.

IV. DECOMPOSED PROPAGATION
VECTOR VARIATION MODEL
A. PROPAGATION VECTOR AND DECOMPOSITION
This section establishes the relationship between the timing
and voltage propagation of logic gates by vectorizing them.
We first define propagation vector as follows:

EP := 1v · V̂ +1t · T̂ , (5)

where V̂ and T̂ denote unit vectors in voltage axis and
time axis, respectively, and 1v and 1t denote the propa-
gation in voltage and time domain, respectively. Using the
notation, we vectorize the propagation delay—defined in
Equation (1)—as follows:

EPdelay := (
1
2
VDD −

1
2
VDD) · V̂ + TPD · T̂ = TPD · T̂ (6)

Then we introduce the concept of VIT and use it as a
reference point to decompose EPdelay into a driver-driven
portion—EPdriver— and a receiver-driven portion—EPreceiver .
In DPVVM, we define VIT as the input voltage at which the
output voltage reaches 1

2VDD. If a driver cell is to drive a
receiver cell having the same VIT , it seems more reasonable
to define VIT as the crossing voltage where the input voltage
matches the output voltage, defining TPD as the delay from

input VIT to output VIT [13]. However, this is unrealistic;
every pin in every cell has its unique input voltage threshold,
and therefore, the model must comply with different cells
with different VIT . In this perspective, fixing the output volt-
age to 1

2VDD facilitates the recomposition of TPD for STA,
as will be shown shortly.

Now that the reference voltage point—VIT—is defined,
we define driver propagation vector—propagation of a
receiver cell in input pin, driven by its driver cell:

EPdriver := Vdriver · V̂ + Tdriver · T̂ , (7)

where

Vdriver = VIT −
1
2
VDD (8)

Tdriver = Tin(VIT )− Tin(VDD) (9)

Likewise, we define receiver propagation vector—
propagation of the receiver cell from its input pin to output
pin, driven by the receiver cell itself:

EPreceiver := Vreceiver · V̂ + Treceiver · T̂ , (10)

where

Vreceiver =
1
2
VDD − VIT (11)

Treceiver = Tout (
1
2
VDD)− Tin(VIT ) (12)

Combining Equation (7) and Equation (10) with
Equation (1) yields:

EPdriver + EPreceiver = EPdelay (13)

∴ Tdriver + Treceiver = TPD (14)

By decomposing EPdelay into EPdriver and EPreceiver , we aim to
scale them separately then combine them back to recompose
EPdelay on a non-characterized PVT corner.; we derive EPdriver
with linear scaling of the input Ttran and we compute EPreceiver
by scaling from the reference PVT corner.

Before further discussions, it is essential to note that
ETreceiver should be, in theory, always positive when the out-
put voltage waveform is a monotonic function near 1

2VDD.
As defined earlier in this section, VIT is the input voltage level
at which the output voltage is 1

2VDD; by the very definition of
VIT , the input must preemptively reach VIT before the output
reaches 1

2VDD. Our objective is to obtain the trend of ETreceiver
as being inter-scalable across corners, so it is desirable that
ETreceiver waveforms exhibit positive values and monotonic
trends to input Ttran and Cl , as seen in Fig. 5. In fact,
under an exhaustive examinations on all (OC t , c, a,Ttran,Cl)
combinations specified in Section V-B, we always observed
positive values for ETreceiver . Such consistency, with reliable
experimental results, proves that our tentative definition of
VIT was appropriate for our purpose.

To understand the relationship between the propagation
vectors and the implications under each vector’s direction,
Fig. 6 depicts possible propagation scenarios of an inverting
delay categorized by propagation conditions: rise/fall delay,
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FIGURE 6. Possible combinations of delay propagation with various timing arc, input transition time, and VIT conditions.

the superiority ofVIT over 1
2VDD, and the sign of TPD. By def-

inition, Tdriver is positive when Tin(VIT ) > Tin( 12VDD)—
as are the cases in Fig. 6(a), (b), (g), and (h)—and nega-
tive otherwise—as are the cases in Fig. 6(c), (d), (e), and (f).
In Fig. 6(a) and (g), Tdriver and Treceiver are both pos-
itive, thus TPD is always positive. On the contrary,
in Fig. 6(c), (d), (e), and (f), Tdriver is negative; if its magni-
tude is smaller than that of Treceiver , TPD is still positive—
as in Fig. 6(c) and (e). Negative delays occur if and
only if Tdriver is negative and its magnitude outmatches
that of Treceiver—as shown in Fig. 6(d) and (f). The cases
in Fig. 6(b) and (h) do not occur since negative delay is not
possible when Tdriver is positive.

In short, the effect of EPdriver may obscure the effect of
EPreceiver causing inconsistent or even negative TPD in some
conditions.

B. VARIATION MODEL CHARACTERIZATION
In this subsection, we discuss how DPVVM is characterized.
Our DPVVM libraries contain VIT for both OCb and OC t—
denoted as V b

IT and V t
IT , respectively, in this paper.

VIT acts as a reference voltage point which allows the
derivation of Tdriver and Treceiver using Ttran and TPD, respec-
tively. This property makes our variation model applicable
to mainstream delay models—namely NLDM, CCS, and
ECSM—as they all eventually generate Ttran and TPD during
STA, the data to which DPVVM is applied. For a given Ttran,
Tdriver can be computed using proportionality as follows:

Tdriver =
Vdriver ∗ Ttran

Vtran
=

(V b
IT −

1
2VDD) ∗ Ttran
Vtran

, (15)

where Vtran = Vupper − Vlower . Then for given for OCb and
OC t , Treceiver can be derived from Tdriver and TPD as follows:

Treceiver = TPD − Tdriver (16)

Now that we have Treceiver forOCb andOC t , we can derive
kreceiver for OC t , in a way equivalent to Equation (4). The
derating method and DPVVM also require ktran, a derating
factor for Ttran.

FIGURE 7. Workflow for deriving intermediate variables and cross-corner
scaling.

C. CROSS-CORNER TIMING ESTIMATION
In STA, our goal is to derive T ′PD by estimating T ′driver and
T ′receiver at OC

t ; its overall flow is summarized in Fig. 7 with
corresponding equation numbers. As depicted in Fig. 7(a),
cross-corner timing estimation flow in the conventional der-
ating involves the scaling of Ttran and TPD. It should be noted
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that TPD is derived from T ′tran using a given delay model;
the process is represented by delay model in the figure.
The estimation flow in our proposed DPVVM is depicted
in Fig. 7(b). The most significant difference between these
approaches is that DPVVM scales Treceiver instead of TPD; the
rest of the steps involves the derivation of Tdriver to retrieve
Treceiver , scaling, then recomposing into T ′PD.
It is possible to determine T ′driver using proportionality,

so Tdriver does not require a derating factor other than ktran
from the previous cell, which is used to yield T ′tran:

T ′tran := ktran ∗ Ttran (17)

T ′driver is derived in a way similar to Equation (15):

T ′driver =
(V t

IT −
1
2VDD) ∗ T

′
tran

Vtran
(18)

Then, T ′receiver is estimated by derating Treceiver with kreceiver :

T ′receiver = kreceiver ∗ (TPD − Tdriver ) (19)

It is important to note that Tdriver—not T ′driver—is used
in Equation (19) since the decomposition is performed to
Treceiver in OCb. Finally, we obatin T ′PD:

T ′PD := T ′driver + T
′
receiver (20)

FIGURE 8. Cross-corner timing estimations from base corner(s) to a
desired target corner, plotted on PVT dimension.

D. RECOMPOSITION FROM MULTIPLE DIMENSIONS
In the previous subsections, we assumed the timing esti-
mation from a single base corner. The concept is visu-
alized in Fig. 8(a), where OCb

= (NN/0.8V/25 ◦C)
and OC t

= (FF/0.9V/125 ◦C). To further improve the
estimation accuracy, we propose full-characterizations—
if not already done—on single-dimension PVT variation
conditions—conditions where only one of P, V, or T varia-
tion occurs. Then, upon multi-dimension variation, we esti-
mate timings from more than one pre-characterized base
corner; the proposed concept is visualized in Fig. 8(b),
where pre-characterized libraries exist for each of P, V, and
T variation. In the example, cross-corner timing estima-
tion is done from each base corners denoted as follow:
OCb,P

= (FF/0.8V/25 ◦C), OCb,V
= (NN/0.9V/25 ◦C),

and OCb,T
= (NN/0.8V/125 ◦C).

We apply a simple averaging of timing from applicable
base corners as follows:

T ′PD = average(T ′PPD,T ′VPD,T ′TPD), (21)

for applicable dimensions where T ′cond .
PD refers to TPD esti-

mated from OCb,cond . to OC t using unique derating factors
for each ofOCb,cond . andOC t combinations.We shall denote
the method—applicable to both derating and DPVVM—
as Multi-Dimension Recomposition (MDR).

FIGURE 9. Estimated delay plotted against actual HSPICE measurements
with and without MDR, under mult-dimension variations.

Fig. 9(a) and (b) plots the accuracy of estimated delay
from a single OCb and using MDR, respectively, for multi-
dimensional cross-corner estimation. First, in Fig. 9(a),
we observed remarkable accuracy gain with DPVVM alone,
allowing minimal error even for the negative delay. As for
the impact of MDR, as shown in Fig. 9(b), we observed sig-
nificant improvements to derating-MDR over derating
even estimating negative delay to some extent. However,
the accuracy of the best-performing DPVVM-MDR, by bring-
ing the best of both worlds, fit the reference curve better than
derating-MDR.

The rationale of characterizing multiple base corners under
single-dimension variations is as follows. First, the num-
ber of base corners increases linearly with the introduction
of new variation parameters, whereas the number of total
corners increases exponentially; the characterization effort
of base corners is always disproportionately lower. Second,
we expect that most users would choose to characterize most
single-dimension corners, if not already present. In most
cases, MDR can exploit existing pre-characterized corners
to enhance estimation accuracy without further overheads.
Finally, we demonstrate in Section V-D that DPVVM-MDR
is more accurate than DPVVM under comparable characteri-
zation effort; it is far more beneficial to increase the number
of base corners instead of the number of data samples.

E. APPLICATION TO TIMING CONSTRAINTS
Characterization of timing constraints such as setup and hold
time is especially problematic in cell characterization due to
substantial computational effort. This subsection extends our
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FIGURE 10. Decomposed vectors of a flip-flop; acquisition of EPsetup and
EPhold slightly differ.

notion of propagation vectors into sequential cells to enable
cross-corner estimations of timing constraints.

A timing constraint of cell is measured as the mini-
mum or maximum propagation time between a data pin
and the clock pin; like for propagation delay, it is impor-
tant to decompose the driving time of its input cells—clock
and data—to obtain meaningful timing components that are
scalable across corners. Decompositions of setup and hold
time are depicted in Fig. 10; we define signal propagations
involving setup and hold time, EPsetup and EPhold , respectively,
each of which is decomposed into three vectors as follows:

EPsetup = EPdriver(setup) − EPdriver(CK ) + EPreceiver(setup) (22)
EPhold = EPdriver(CK ) − EPdriver(hold) + EPreceiver(hold), (23)

where EPreceiver(setup) and EPreceiver(hold) each denotes the
receiver propagation vector for setup time and hold time,
respectively; EPdriver(setup) and EPdriver(hold) each denotes the
driver propagation vector for setup time and hold time of data
pin, respectively; finally, EPdriver(CK ) denotes driver propaga-
tion vector of clock pin.

The scaling of the timing constraints are, in principle,
similar to that of propagation delays:

T ′setup = T ′driver(setup) − T
′

driver(CK )

+ kreceiver(setup)∗(Tsetup−Tdriver(setup)+Tdriver(CK ))

(24)

T ′hold = T ′driver(CK ) − T
′

driver(hold)

+ kreceiver(hold)∗(Thold−Tdriver(CK )+Tdriver(hold))

(25)

For instance, for setup time, Treceiver(setup) is scaled using
kreceiver(setup); Tdriver(setup) and Tdriver(CK ) are derived in pro-
portion to Ttran of data and clock pin, respectively, using
Equation (19). The scaling accuracy of timing constraints will
be discussed shortly in Section V.

F. COMPATIBILITY WITH CONVENTIONAL DELAY MODELS
There are mainly two types of variation models: sepa-
rate variation models which induce modifications to STA—
e.g., [29], [31] OCV, AOCV and POCV [1]—and library

FIGURE 11. Colormaps of APE(left) and SAPE(right); APE diverges to
infinity when the actual value reaches 0.

generationmethods—e.g., [4], [28]—which generate generic
libraries with estimated timings. In contrast, our proposed
model may fall into both categories. DPVVM is a sepa-
rate variation model independent of delay models since the
decomposition and scaling occur at STA-stage after TPD and
Ttran are computed. It is thus compatible with many promi-
nent delay models, namely NLDM, CCS, and ECSM. Our
model can also generate NLDM libraries at non-base corners
by applying the scaling to readily available TPD and Ttran in
the lookup tables.

Furthermore, the concept of decomposition itself may find
its place in state-of-the-art variationmodels based onmachine
learning or deep learning such as [4], [28]–[31], although the
impact is to be assessed in future works. Decomposition of
TPD yields monotonic and predictable timing components;
this process is equivalent to pre-processing input data in
machine learning. For instance, Aadam [31] is a aging-aware
variation model which applies deep learning to STA flow.
In its timing characterization phase, Aadam characterizes
aging-aware cell delay dataset; the model may be combined
with our decomposition approach to tentatively improve its
accuracy.

V. EXPERIMENTAL RESULTS
A. ERROR METRIC
As discussed in Section III, the conventional error metric—
MAPE—is inadequate for delay estimations due to out-
liers or an undefined value in the near-zero region. As our
error metric, we adopt asymmetric mean absolute percentage
error (SMAPE), which is the mean of symmetric absolute
percentage error (SAPE) [37]; we shall use a variant of
SAPE which is widely used in academia [38]–[42] in order
to mitigate division-by-zero problem defined as follows:

SAPE =
|Ft − At |

(|At | + |Ft|)/2
, (26)

where At and Ft each denotes actual value—equivalent to
actual delay in this paper—and forecast value—equivalent to
estimated delay in this paper—respectively, for an arbitrary
datapoint t . Compared to MAPE, SMAPE is less prone to
outliers for SAPEs are upper-bounded to 200%. To highlight
the characteristics of APE and SAPE, Fig. 11 plots their error
colormaps for different actual and estimated delay values.
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FIGURE 12. Cross-corner timing estimation errors of combinational logic cells under single-dimension PVT variations.

SAPE provides an upper-bound error of 200% for negative
error, and the map is symmetrical to Ft = At , whereas APE
diverges to infinity when At is near zero and the map is asym-
metrical; the error sensitivity differs to the sign difference
of Ft offset. It should be noted that in this paper, undefined
error—due to zero denominator—is mitigated by adding a
tiny constant(1e-30) to the denominator of SAPE.

B. EXPERIMENT SETUP
To highlight the accuracy of DPVVM, we performed a series
of comparisons to the baseline derating method by perform-
ing cross-corner timing estimations on various operating
conditions. We used the Synopsys Finesim P-2019.06-SP2
simulator for SPICE simulation of the pre-layout standard
cells coupled with a custom predictive technology model
(PTM) fitted to Intel 14nm process technology acquired
from [43].

Types of parameters and their respective configurations
are described in Table 1. As variation models, the baseline
derating and our proposed DPVVM are compared.

TABLE 1. Applicable parameters and respective configurations in our
experiments.

For both methods, derating factors—kPD for derating and
kreceiver for DPVVM;ktran for both—are uniquely derived for
each of (OC t , c, a,Ttran,Cl) condition. Both are configured
both with and without MDR to distinguish its impact on the
accuracy from DPVVM.

We performed simulations over a variety of standard cells;
both inverting and non-inverting timing arcs are also consid-
ered if applicable. We also evaluated 4-input configurations
for NAND and NOR cells.

Lookup tables consist of combinations of 8 input Ttran
and 5 Cl values. We validated the variation models on

124 non-base corners—12 corners with 1-dimension varia-
tions, 48 corners with 2-dimension variations, and 64 cor-
ners with 3-dimension variations. In MDR, 12 corners with
1-dimension variations become base corners; we validated
the models on 112 non-base corners.

Unless otherwise stated, we neglected the effect of data
sampling by using all data points in the lookup tables. For
setup/hold timing constraints, a DFF cell is used with 8 data
and 8 clock transition time values.

C. TIMING ESTIMATION RESULTS
1) ESTIMATION ACCURACY ACROSS LOGIC GATES
We first examine the estimation accuracy across a variety of
logic gates. Fig. 12 shows the accuracy of single-dimension
cross-corner timing estimations compared to the baseline
derating. Derating had an estimation error of 10%; the rise
error rate was overwhelmingly high for INV and NAND cells.
The rate is due to the high driving strength of the PMOS
transistor; the rise transition in INV and NAND involves the
transition of a single PMOS device. The high error rate pri-
marily originates from fast transition errors. In comparison,
the driving of a single NMOS device, represented by the NOR
cell’s fall transition, is less vulnerable to error. Furthermore,
transitions involving multiple transistors showed relatively
low error for derating.

In contrast to the derating, DPVVM successfully estimated
the timing variety in a consistent manner, outperforming
the baseline derating in every cell. DPVVM achieved an
average SMAPE of 4.3%, an improvement of 56% over the
baseline 10%.

2) ESTIMATION ACCURACY ACROSS SOURCES
OF VARIATIONS
We now examine how the estimation error is affected by
various sources of variations by dissecting the estimation
error into each of the PVT corners; the results are shown
in Fig. 13.

For process variations, we observed that the derating errors
were relatively high for FS and SF corners, which are heavily
impacted by negative delays; DPVVM was able to success-
fully estimate negative delays. Derating errors were relatively
low for FF and SS corners with marginal improvements by
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FIGURE 13. Cross-corner timing estimation errors for different sources of
variations under single-dimension PVT variations.

DPVVM. Overall, for process variations, DPVVM achieved
an average error rate of 2.0%, which is an improvement
of 74% over the baseline of 7.8%.

For voltage variations, we observed higher derating error
for higher voltages, caused by faster transitions and thus
negative delays. DPVVM error appeared to be proportional
to voltage offset; DPVVM suffered the most under voltage
variations, probably due to the large gap in VIT . Overall,
for voltage variations, DPVVM achieved an average SMAPE
of 8.0%, which is an improvement of 42% over the baseline
of 13%.

For temperature variation, DPVVM provided consistently
accurate estimation results; we achieved an average SMAPE
of 3.0%, which is an improvement of 65% over the baseline
of 8.7%.

FIGURE 14. Cross-corner timing estimation errors plotted across different
Ttran and Cl conditions, under single-dimension PVT variations.

3) SENSITIVITY TO SAMPLING POLICIES
To show the impact of sampling, we begin by comparing the
accuracy error across different Ttran and Cl pairs, as shown
in Fig. 14. The larger the error gap, the more sensitive the
error is to the choice of samples since scaling factors are
derived in a way that minimizes the scaling error of the
chosen sample. In effect, the choice sampling policy affects
the location of saddle points—the points with the lowest error
rate—of the surface curves, although its impact on the actual
shape itself is marginal. The surface curve in Fig. 14(a) cannot
become as flat as in Fig. 14(b) no matter what derating factor
is chosen.

Derating—represented by Fig. 14(a)—shows a U-shaped
curve, peaking errors in high Ttran and low Cl region;

FIGURE 15. Cross-corner timing estimation errors for different sampling
policies.

selecting samples in the high-error region would reduce those
peaks, but the error would increase in any other region.
On the contrary, DPVVM—represented by Fig. 14(b)—
shows a relatively flat curve, implying less sensitivity to
sampling.

To prove the observations, we compared different sampling
approaches to derive the derating factors, as shown in Fig. 15.
Here, all is the baseline without sampling. median-4
and median-8 refer to the choice of 4 and 8 samples from
the median, respectively. corner-4 refers to the choice
of 1 sample from each corner of the lookup table. Finally,
corner-XX refers to the choice of 4 samples from an
extreme corner; LL denotes low-Cl /low-Ttran, LH denotes
low-Cl /high-Ttran, HL denotes high-Cl /low-Ttran, and HH
denotes high-Cl /high-Ttran corner. SMAPE of derating fluc-
tuated and ranged from 9.2% to 26%, resulting in high error-
susceptibility to sampling policies. SMAPE of DPVVM,
on the contrary, was very consistent throughout various
sampling methods and ranged from 4.3% to 7.0%. These
results align with the curves shown in Fig. 14, where low-Cl /
high-Ttran corner struggled the most from inaccuracies.

4) ESTIMATION ACCURACY UNDER MULTI-DIMENSIONAL
VARIATIONS
Until this point, the simulations covered single-dimension
PVT variations only, assuming one of P, V, or T variations
at a time. Fig. 16 shows the timing estimation error of both
derating and DPVVM, with and without MDR. Through the
application of DPVVM, we observed an average SMAPE
of 7.7%, which is an improvement of 50% over the base-
line 15%. It is interesting to note that although the estimation
errors under multi-dimension variations were consistently
more considerable than the errors under single-dimension
variation, as shown in Fig. 12, the results in both condi-
tions were highly correlated. Applying MDR to both der-
ating and DPVVM yielded average error rates of 10% and
4.8%, respectively, which are improvements of 32% and 37$,
respectively, over derating and DPVVM, respectively.

With MDR combined with DPVVM, our cross-corner
timing estimation error was 4.8% on average, which is an
improvement of 69% over the baseline derating method.

5) ESTIMATION ACCURACY OF TIMING CONSTRAINTS
We also validated DPVVM for the timing constraints of
a DFF sequential cell, as depicted in Fig. 17 Pass-fail
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FIGURE 16. Cross-corner timing estimation errors of combinational logic cells under multi-dimension PVT variations.

FIGURE 17. Cross-corner timing estimation errors of a sequential logic
cell under single and multi-dimension PVT variations.

model is used as constraint style—which defines criteria for
the judgment of simulations [44]—but primitive evaluations
revealed similar tendencies with delay-degradation and slew-
degradation style. Estimations of timing constraints rely on
binary search for a pre-defined number of iterations; the ref-
erence SPICE timings are already rough estimations, limiting
the cross-corner timing estimation accuracy.

Fig. 17(a) shows the timing estimation error under single-
dimension variations. We observed a relatively high error
rate using the derating method, especially for setup/fall and
hold/rise combinations. For these combinations, negative
constraints occurred for slow clock transition time; as repeat-
edly discussed in the previous sections, the derating was
prone to sign flipping across corners, whereas DPVVM esti-
mated the cases more accurately. For timing constraints under
single-dimension variations, we achieved an average error
rate of 14%, which is an improvement of 46% over the
baseline 26%.

The trends in multi-dimension variations—as shown
in Fig. 17(b)—again resembled that of single-dimension vari-
ations but with higher error rates. Upon applying MDR to
derating and DPVVM, the error rate mirrored that of single-
dimension variations, the observation of which is similar to
that of propagation delay estimations. ApplyingMDR to both
derating and DPVVM yielded average SMAPEs of 27% and
15%, respectively, which are improvements of 43% and 42$,

respectively, over derating and DPVVM, respectively. With
MDR combined with DPVVM, our cross-corner timing esti-
mation error was 15% on average, which is an improvement
of 59% over the baseline derating method.

FIGURE 18. Cross-corner timing estimation errors of NAND2 cell across
technology nodes and device types.

6) ESTIMATION ACCURACY ACROSS TECHNOLOGY NODES
We also performed an analysis on how the accuracy of
cross-corner timing estimation methods is affected by pro-
cess technology. Fig. 18 shows average estimation error
across different process nodes from PTM-MG, the latest
PTM models [45], [46]. hp and lstp are device types and
each represents high-performance and low standby power
device technology, respectively. Overall, we observed a slight
increase in estimation error for more advanced nodes, but the
difference seemed relatively insignificant. However, it should
be noted that PTM-MG assumes the same technologies; the
same parameters were tuned differently to match the charac-
teristics of node shrinking [46].
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FIGURE 19. Cross-corner timing estimation errors of ISCAS’89 benchmark circuits under single and multi-dimension PVT variations.

However, there were differences between hp and lstp.
We observed that the estimation accuracy of hp is improved
by applying DPVVM, whereas the improvements of lstp
depended more on MDR. To understand the phenomenon,
we further examined NAND2 cell under single-dimension
variations and observed that hp devices were much faster and
thus had more negative delays: in overall, 15% of timings
were negative, and we observed 7.6% sign mismatch upon
derating. In contrast, for lstp devices, only 1.3% of timings
were negative, and we observed 0.21% sign mismatch upon
derating. For both hp and lstp, DPVVM-MDR had 0.28%
and 0.23% sign mismatch and thus more consistent results.

7) ESTIMATION ACCURACY ON COMPLEX LOGIC CIRCUITS
Finally, we validate the accuracy of our proposed method
in complex logic circuits. We used ISCAS’89 benchmark
circuits [47] and performed STA on Synopsys PrimeTime
K-2015.12-SP2. The results are shown in Fig. 19; the
circuits are presented in path length order, ranging from
5 to 139 gates. Under single-dimension variations, as shown
in Fig. 19(a), DPVVM achieved an error rate of 7.1%,
an improvement of 35% over the baseline 11% Under multi-
dimension variations, DPVVM and MDR both contributed
to yield approximately 9.3% and 9.0% estimation error,
respectively; together, DPVVM-MDR achieved an SMAPE
of 5.6%, an improvement of 61% over the baseline 14%.

D. CHARACTERIZATION EFFORT
To demonstrate our proposedmethod’s efficiency, we analyze
our variationmodel’s characterization effort and compare it to
the full-characterization without delay variation models. For
both pre-characterized base corners and non-base corners,
the characterization of VIT through DC analysis is required,
which is comparable to a single transient analysis and is
negligible to timing constraints. The derivation of derating

factors—kreceiver and ktran—is as simple as performing tran-
sient analysis on sample data points; the analysis is identical
for the deviation of kPD and ktran for derating. Theoretically,
without considering the imbalance in simulation time and DC
analysis overheads, sampling 4 points out of 6 Cl and 8 Ttran
pairs would require 8.3% of the simulation time. For timing
constraints, sampling 4 points out of 8 Ttran values for each of
the data and clock pin would require 7.1% simulation time.
Real-time SPICE simulations required 9.8% and 5.1% of
full simulation for propagation delay and timing constraints,
respectively, including DC analysis, which was an increase
by 11% over derating.

For the characterization of the standard cell library
from 45nm Open Cell Library [48], the characterization
in 125 PVT corners—consisting of 1136 delay and 49 timing
constraints lookup tables from the total of 135 cells—would
require approximately 3200 hours. For DPVVM, the charac-
terization time can be reduced to 280 hours or by 91%. For
DPVVM-MDR, the characterization time can be reduced to
570 hours or by 82%.

It is worth mentioning that, as discussed in Section IV-D,
we project that our variation model will be utilized to esti-
mate timings at less-frequent PVT corners. To characterize
the variation model for an extra PVT corner, our proposed
methods—both DPVVM and DPVVM-MDR—only require
8.0% of full-characterization time—2.1 hours as compared to
26 hours for a full-characterization.

We also plotted the characterization effort of our methods
against estimation error to discuss Pareto efficiency—trade-
off between characterization effort and accuracy—of each
method by sweeping the characterization effort1 required to
yield 125 corners. The plot is shown in Fig. 20; the closer

1Here, we swept the number of samples to yield the scaling factors; 100%
characterization effort means all data points are computed, thus requiring no
timing estimation.
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TABLE 2. Comparison of estimation approaches of state-of-the-art models and our proposed models; our proposed simple derating-based models
showcase the fastest time-to-market with low estimation overhead and technology dependency.

FIGURE 20. Cross-corner timing estimation errors for different
characterization efforts—reflecting the number of samples and base
corners—to generate a full library.

the curve is to the lower-left corner, the better its trade-off
relationship is. Upon the adoption of DPVVM, characteri-
zation overhead is similar under the same sampling ratio,
with significant accuracy improvement; Pareto improvement
is obtained. As for the adoption of MDR, the choice is made
between the number of samples versus more base corners
for the same characterization effort. However, the accuracy
of MDR was always superior than non-MDR models in all
cases; again, Pareto improvement is obtained. We therefore
recommend combining DPVVM and MDR for Pareto opti-
mality, achieving the best trade-off relationship between the
accuracy and characterization effort.

In this subsection, we discussed the characterization effort
of DPVVM-MDR under the context of full-library char-
acterization and an extra corner characterization. We also
explored the trade-off between the accuracy and characteri-
zation effort—i.e., the number of samples and base corners—
and showed that DPVVM-MDR was Pareto optimal, achiev-
ing the most accurate timing estimation in all cases.

VI. COMPARISON TO STATE-OF-THE-ART APPROACHES
In this part, we compare our proposed delay variation models
to the state-of-the-art variation models [4], [28]–[30]. First,
we compare various aspects of these works as summarized
in Table 2. Our proposed models can be considered derating-
based, withmarginal computational overheads of DC analysis
and library generation. Our models are also transparent
to sources of variations, making them independent of

process technologies. Also, our work is the only work in the
group that considers sequential cells.

The model in [28] uses a convolutional neural net-
work (CNN) to estimate timing in both inter-corner and
intra-corner manner. This 40-layer fully connected network
has the highest computational overheads of network con-
figuration, training, and inference. Its technology depen-
dence is at large, but it seems clear that even if the
network can be reused on different process technologies,
training and validation is obligatory. The model was val-
idated on a fairly low number of target corners result-
ing in low improvement in characterization effort. Next,
the authors in [4] use machine learning to generate libraries
for design technology co-optimization (DTCO). Although
the computational—i.e. training—overheads of their model
are significant, the authors show that the inference effort
is negligible compared to library compilation time. For its
DTCO flow—sweeping of process parameters—the num-
ber of target corners was the highest in the comparison
group; the improvement in characterization effort was 96%.
Finally, the work from [29], [30] uses feature extractions from
CNN; the inference overhead should be moderate in compar-
ison to a fully connected neural network. The sampling rate
for cross-corner timing estimation is unspecified.

We also compared the estimation accuracy of each method
as shown in Table 3.Wematched our experimental conditions
to these works as fairly as possible, computed our models’
error according to the given metric, and compared the value
extracted from the papers. Note that the comparison should
only be interpreted as rough estimates to show how all of
these models are comparable in terms of claimed accuracy
since the differences in the environments—i.e., target cells,
validation methods, paths, and corners—are significant. For
instance, the variations in [4], [31] differ from global PVT
variations in our work. However, we decided to include [4]
to compare its DTCO parameter variations with the pro-
cess and voltage variations. We see that all the presented
works easily outperform the conventional derating method in
order of magnitude. In contrast, when compared to DPVVM-
MDR, they yielded comparable results. This infers that both
DPVVM-MDR and learning-based models were capable of
estimating timing tendency across various operating condi-
tions. The only significant difference was when compared
to [29]. In effect, the model was compared against results
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TABLE 3. Comparison of estimation accuracy of state-of-the-art models and DPVVM-MDR; our proposed model showcases comparable results as
compared to the complex learning-based models. Note that the figures should only be interpreted as rough estimates owing to the differences in
experimental environments.

from Synopsys HSPICE as opposed to Synopsys PrimeTime
in our work; the accuracy gap is marginal considering the
difference in comparison methods.

In this section, we discussed that the accuracy of our
proposed models was comparable to sophisticated state-of-
the-art variation models. Then, DPVVM and DPVVM-MDR
shine in that it is independent to process technologies, simple
to deploy with very low computational overhead. Then again,
the concept of decomposition into Treceiver and Tdriver in
DPVVM can be adopted to any of these models, as well
as aging-aware delay models such as [31]; the effectiveness
of the decomposing remains to be assessed in our future
works.

VII. CONCLUSION
The explosion of PVT conditions is becoming problematic
when combined with emerging low-power design technolo-
gies. Furthermore, through the technology shrinking, the
timing variability due to PVT variations is becoming exac-
erbated. This paper demonstrated that propagation delay and
timing constraints could be decomposed into propagation
made by a receiver cell and by its driver cell(s) and be
independently scaled to achieve a very reliable cross-corner
timing estimation. Our proposed global variation model,
DPVVM, can be applied to any prominent delay models
and can be applied to combinational and sequential logic
gates alike. We achieved average timing estimation accuracy
of 4.8% and 5.6%, respectively, on single cells and complex
logic circuits, respectively; these are improvements of 69%
and 61% in comparison to the conventional derating method.
The characterization effort to model a PVT corner is reduced
by 92%, compared to the full-characterization of a standard
cell library, with 11% characterization overhead over the
derating method due to DC analysis, but accounted for only
0.76% of full-characterization time.

We believe that not only does DPVVM enable cross-corner
timing estimations with its high accuracy, its concept of
decomposition can also be embraced by various fields of
timing closure—e.g., power estimation, noise estimation, and

on-chip variation models(e.g., OCV, AOCV, and POCV )—
and even to the bleeding edge variation models based on
machine learning. The study of DPVVM’s efficiency in these
areas remains to be assessed in the future, in conjunction with
the actual fabrication statistics.
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